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Abstract

We extend the usual Kustaanheimo–Stiefel 4D → 3D mapping to study and
discuss a constrained super-Wigner oscillator in four dimensions. We show
that the physical hydrogen atom is the system that emerges in the bosonic sector
of the mapped super 3D system.

PACS numbers: 11.30.Pb, 03.65.Fd, 11.10.Ef

1. Introduction

The R-deformed Heisenberg or Wigner–Heisenberg (WH) algebraic technique [1] which was
super-realized for quantum oscillators [2–4] is related to the paraboson relations introduced
by Green [5].

Let us now point out that the WH algebra is given by the following (anti-)commutation
relations ([A,B]+ ≡ AB + BA and [A,B]− ≡ AB − BA):

H = 1
2 [a−, a+]+, [H, a±]− = ±a±, [a−, a+]− = 1 + cR, (1)

where c is a real constant associated with the Wigner parameter [2] and the R operator satisfies

[R, a±]+ = 0, R2 = 1. (2)

Note that when c = 0, we have the standard Heisenberg algebra.
The generalized quantum condition given in equation (1) has been found to be relevant

in the context of integrable models [6]. Furthermore, this algebra was also used to solve
the energy eigenvalue and eigenfunctions of the Calogero interaction, in the context of one-
dimensional many-body integrable systems, in terms of a new set of phase space variables
involving exchanged operators [7, 8]. From this WH algebra, a new kind of deformed calculus
has been developed [9–11].
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The WH algebra has been considered for the three-dimensional non-canonical oscillator to
generate a representation of the orthosympletic Lie superalgebra osp(3/2) [12], and recently
Palev et al have investigated the 3D Wigner oscillator under a discrete non-commutative
context [13, 14]. In addition, the connection of the WH algebra with the Lie superalgebra
s�(1|n) has been studied in a detailed manner [15].

Recently, the relevance of relations (1) to quantization in fractional dimension has also
been discussed [16, 17] and the properties of Weyl-ordered polynomials in operators P and
Q, in fractional-dimensional quantum mechanics, have been developed [18].

The Kustaanheimo–Stiefel mapping [19] has been exactly solved and well-studied in the
literature. (See for example, Chen [20], Cornish [21], Chen and Kibler [22], D’Hoker and
Vinet [23].) Kostelecky, Nieto and Truax [24] have studied in a detailed manner the relation
of the supersymmetric (SUSY) Coulombian problem [25–29] in D-dimensions with that of
SUSY isotropic oscillators in D-dimensions in the radial version (see also Lahiri et al [30]).
For the mapping with 3D radial oscillators, see also Bergmann and Frishman [31], Cahill
[32] and Chen et al [33]. The connection of the D-dimensional hydrogen atom with the D-
dimensional harmonic oscillator in terms of the su(1, 1) algebra has been investigated by Zeng
et al [34]. However, the correspondence mapping of a 4D isotropic constrained super-Wigner
oscillator (for super-Wigner oscillators see our previews work [2, 3]) with the corresponding
super-system in 3D, such that the usual 3D hydrogen atom emerges in the 4D → 3D mapping
in the bosonic sector, has not been studied in the literature; the objectives of the present
work are to do such a mapping and to analyze in detail the consequences. In this work, the
stationary states of the hydrogen atom are mapped onto the super-Wigner oscillator using the
Kustaanheimo–Stiefel transformation.

This work is organized as follows. In section 2, we start by summarizing the R-deformed
Heisenberg algebra or the Wigner–Heisenberg algebraic technique for the Wigner oscillator,
based on the super-realization of the WH algebra for simpler effective spectral resolutions of
general oscillator-related potentials, applied by Jayaraman and Rodrigues, in [2]. In section 3,
we illustrate how to construct the 4D → 3D mapping in the bosonic sector which offers a
simple resolution of the hydrogen energy spectra and eigenfunctions. The conclusion is given
in section 4.

2. The super-Wigner oscillator in 1D

The Wigner oscillator ladder operators

a± = 1√
2
(±ip̂x − x̂) (3)

of the WH algebra may be written in terms of the super-realization of the position and
momentum operators, namely x̂ = x�1 and p̂x = −i�1

d
dx

+ c
2x

�2, satisfy the general
quantum rule [x̂, p̂x]− = i(1 + cR), where c = 2(� + 1). Thus, in this representation the
reflection operator becomes R = �3, where �3 is the diagonal Pauli matrix.

Thus, from the super-realized first-order ladder operators given by

a±(� + 1) = 1√
2

{
± d

dx
± (� + 1)

x
�3 − x

}
�1, � > 0, (4)

the Wigner Hamiltonian becomes

H(� + 1) = 1
2 [a+(� + 1), a−(� + 1)]+ (5)

and the WH algebra ladder relations are readily obtained as

[H(� + 1), a±(� + 1)]− = ±a±(� + 1). (6)
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Equations (5) and (6) together with the commutation relation

[a−(� + 1), a+(� + 1)]− = 1 + 2(� + 1)�3 (7)

constitute the super-WH algebra.
Thus, the super-Wigner oscillator Hamiltonian in terms of Pauli’s matrices (�i, i =

1, 2, 3) is given by

H(� + 1) = 1

2

{
− d2

dx2
+ x2 +

1

x2
(� + 1)[(� + 1)�3 − 1]�3

}

=
(

H−(�) 0
0 H+(�) = H−(� + 1)

)
, (8)

where the bosonic and fermionic sector Hamiltonians are respectively given by

H−(�) = 1

2

{
− d2

dx2
+ x2 +

1

x2
�(� + 1)

}
(9)

and

H+(�) = 1

2

{
− d2

dx2
+ x2 +

1

x2
(� + 1)(� + 2)

}
= H−(� + 1). (10)

Note that the bosonic sector is the Hamiltonian of the oscillator with a barrier.
The super-Wigner oscillator eigenfunctions that generate the eigenspace associated with

even(odd) �3-parity for bosonic(fermionic) quanta n = 2m(n = 2m + 1) are given by

�n=2m(x; � + 1) =
(

ψ
(m)
− (x; �)

0

)
, �n=2m+1(x; � + 1) =

(
0

ψ
(m)
+ (x; �)

)
(11)

and satisfy the following eigenvalue equation:

H(� + 1)�n(x; � + 1) = En�n(x; � + 1)

�3�n=2m = �n=2m (12)

�3�n=2m+1 = −�n=2m+1,

where the non-degenerate energy eigenvalues are obtained by the repeated application of the
raising operator on the ground eigenstate

�n(x; � + 1) ∝ (a+(� + 1))n�0(x; � + 1) (13)

and are given by

En = � + 3
2 + n, n = 0, 1, 2, . . . . (14)

The ground-state energy eigenfunction satisfies the following annihilation condition:

a−(� + 1)�(0)(x; � + 1) = 0, (15)

which using equation (4) results in

ψ
(0)
− (x; �) = N1x

(�+1) e− x2

2 , ψ(0)
+ (x; �) = N2x

−(�+1) e− x2

2 .

If we assume � + 1 > 0, only ψ
(0)
− (x; �) meets the physical requirement of vanishing at the

origin and ψ
(0)
+ (x; �), which does not stand this test, is discarded by setting N2 = 0 in (15). In

this case, the normalizable ground-state eigenfunction is given, up to a normalization constant,

3
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by

�0(x; � + 1) ∝
(

x(�+1) e− 1
2 x2

0

)
, (16)

which has even �3-parity, i.e. �3�0(x; � + 1) = �0(x; � + 1).

For the bosonic and fermionic sector Hamiltonians, the energy eigenvectors satisfy the
following equation:

H±(�)ψ
(m)
± (x; �) = E

(m)
± ψ

(m)
± (x; �), (17)

where the eigenvalues are exactly constructed via WH algebra ladder relations and are given
by

E
(m)
− = E0 + 2m, E(m)

+ = E0 + 2(m + 1), m = 0, 1, 2, . . . , (18)

where E0 is the energy of the Wigner oscillator ground state. Note that the energy spectrum of
a particle in a potential given by bosonic sector Hamiltonian is equally spaced, similar to that
of the 3D isotropic harmonic oscillator, with a difference of two quanta between two levels.

In addition, note that the operators a±(� + 1) given in equation (4) together with
H(� + 1), J± = (a±(� + 1))2 satisfy an osp(1 | 2) superalgebra.

3. The constrained super-Wigner oscillator in 4D

The usual isotropic oscillator in 4D has the following eigenvalue equation for its Hamiltonian
HB

osc, described by (employing the natural system of units h̄ = m = 1) the time-independent
Schrödinger equation

H B
osc�

B
osc(y) = EB

osc�
B
osc(y), (19)

with

H B
osc = − 1

2∇2
4 + 1

2 s2, s2 = �4
i=1y

2
i , (20)

∇2
4 = ∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

+
∂2

∂y2
4

=
4∑

i=1

∂2

∂y2
i

, (21)

where the superscript B in HB
osc is in anticipation of the Hamiltonian, with constraint to

be defined, being implemented in the bosonic sector of the super 4D Wigner system with
unitary frequency. Changing to spherical coordinates in four space dimensions and allowing
a factorization of the energy eigenfunctions as a product of a radial eigenfunction and spin-
spherical harmonic. In (21), the coordinates yi (i = 1, 2, 3, 4) in spherical coordinates in 4D
are defined by [20, 23]

y1 = s cos

(
θ

2

)
cos

(
ϕ − ω

2

)

y2 = s cos

(
θ

2

)
sin

(
ϕ − ω

2

)

y3 = s sin

(
θ

2

)
cos

(ϕ + ω

2

)

y4 = s sin

(
θ

2

)
sin

(ϕ + ω

2

)
,

(22)

where 0 � θ � π, 0 � ϕ � 2π and 0 � ω � 4π .
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The mapping of the coordinates yi(i = 1, 2, 3, 4) in 4D with the Cartesian coordinates
ρi (i = 1, 2, 3) in 3D is given by the Kustaanheimo–Stiefel transformation

ρi =
2∑

a,b=1

z∗
a�

i
abzb, (i = 1, 2, 3) (23)

z1 = y1 + iy2, z2 = y3 + iy4, (24)

where �i
ab are the elements of the usual Pauli matrices. If one defines z1 and z2 as in

equation (24), Z = (z1

z2

)
is a two-dimensional spinor of SU(2) transforming as Z → Z′ = UZ

with U a two-by-two matrix of SU(2) and, of course, Z†Z is invariant. So the transformation
(23) is very spinorial. In addition, using the standard Euler angles in parametrizing SU(2) as
in transformations (22) and (24), one obtains

z1 = s cos

(
θ

2

)
e

i
2 (ϕ−ω) z2 = s sin

(
θ

2

)
e

i
2 (ϕ+ω). (25)

Note that the angles in these equations are divided by 2. However, in 3D, the angles are not
divided by 2, namely ρ3 = ρ cos2

(
θ
2

) − ρ sin2
(

θ
2

) = ρ cos θ. Indeed, from (23) and (25), we
obtain

ρ1 = ρ sin θ cos ϕ, ρ2 = ρ sin θ sin ϕ, ρ3 = ρ cos θ (26)

and also that

ρ = {
ρ2

1 + ρ2
2 + ρ2

3

} 1
2 = {

(ρ1 + iρ2)(ρ1 − iρ2) + ρ2
3

} 1
2

= {(2z∗
1z2)(2z1z

∗
2) + (z∗

1z1 − z∗
2z2)

2} 1
2

= (z1z
∗
1 + z2z

∗
2) =

4∑
i=1

y2
i = s2. (27)

The complex form of the Kustaanheimo–Stiefel transformation was given by Cornish [21].
Thus, the expression for H B

osc in (20) can be written in the form

H B
osc = −1

2

(
∂2

∂s2
+

3

s

∂

∂s

)

− 2

s2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+

1

sin2 θ

(
2 cos θ

∂

∂ϕ
+

∂

∂ω

)
∂

∂ω

]
+

1

2
s2. (28)

We obtain a constraint by projection (or ‘dimensional reduction’) from four to three
dimensional. Note that ψB

osc is independent of ω and provides the constraint condition

∂

∂ω
�B

osc(s, θ, ϕ) = 0, (29)

imposed on H B
osc, the expression for this restricted Hamiltonian, which we continue to call

H B
osc, becomes

H B
osc = −1

2

(
∂2

∂s2
+

3

s

∂

∂s

)
− 2

s2

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
+

1

2
s2. (30)

5
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Identifying the expression in paranthesis in (30) with L2, the square of the orbital angular
momentum operator in 3D, since we always have

L2 = (	σ · 	L)(	σ · 	L + 1), (31)

which is valid for any system, where σi (i = 1, 2, 3) are the Pauli matrices representing the
spin 1

2 degrees of freedom, we obtain for H B
osc the final expression

H B
osc = 1

2

[
−

(
∂2

∂s2
+

3

s

∂

∂s

)
+

4

s2
(	σ · 	L)(	σ · 	L + 1) + s2

]
. (32)

Now, associating H B
osc with the bosonic sector of the super-Wigner system, Hw, subject

to the same constraint as in (29), and following the analogy with section 2 of construction of
super-Wigner systems, we must first solve the Schrödinger equation

Hw�w(s, θ, ϕ) = Ew�w(s, θ, ϕ), (33)

where the explicit form of Hw is given by

Hw

(
2	σ · 	L +

3

2

)

=
(

− 1
2

(
∂
∂s

+ 3
2s

)2
+ 1

2 s2 +
(2	σ · 	L+ 1

2 )(2	σ · 	L+ 3
2 )

2s2 0

0 − 1
2

(
∂
∂s

+ 3
2s

)2
+ 1

2 s2 +
(2	σ · 	L+ 3

2 )(2	σ · 	L+ 5
2 )

2s2

)
.

(34)

Using the operator technique in [2, 3], we begin with the following super-realized mutually
adjoint operators:

a±
w ≡ a±

(
2	σ · 	L +

3

2

)
= 1√

2

[
±

(
∂

∂s
+

3

2s

)
�1 ∓ 1

s

(
2	σ · 	L +

3

2

)
�1�3 − �1s

]
, (35)

where 	�i (i = 1, 2, 3) constitutes a set of Pauli matrices that provide the fermionic coordinates
commuting with the similar Pauli set σi (i = 1, 2, 3) already introduced representing the spin
1
2 degrees of freedom.

It is checked, after some calculations, that a+ and a− of (35) are indeed the raising and
lowering operators for the spectra of the super-Wigner Hamiltonian Hw respectively and they
satisfy the following (anti-)commutation relations of the WH algebra:

Hw = 1
2

[
a−

w , a+
w

]
+

= a+
wa−

w + 1
2

[
1 + 2

(
2	σ · 	L + 3

2

)
�3

]
= a−

w a+
w − 1

2

[
1 + 2

(
2	σ · 	L + 3

2

)
�3

]
(36)[

Hw, a±
w

]
− = ±a±

w (37)

[
a−

w , a+
w

]
− = 1 + 2

(
2	σ · 	L + 3

2

)
�3, (38)

[
�3, a

±
w

]
+ = 0 ⇒ [�3,Hw]− = 0. (39)

Since the operator
(
2	σ · 	L + 3

2

)
commutes with the basic elements a±, �3 and Hw of the

WH algebra (36), (4) and (38) respectively, it can be replaced by its eigenvalues
(
2� + 3

2

)
and

−(
2� + 5

2

)
while acting on the respective eigenspace in the form

�osc(s, θ, ϕ) =
(

�B
osc(s, θ, ϕ)

�F
osc(s, θ, ϕ)

)
=

(
RB

osc(s)

RF
osc(s)

)
y±(θ, ϕ) (40)

6
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in the notation where y±(θ, ϕ) are the spin-spherical harmonics [35, 36],

y+(θ, ϕ) = y� 1
2 ;j=�+ 1

2 ,mj
(θ, ϕ)

y−(θ, ϕ) = y�+1 1
2 ;j=(�+1)− 1

2 ,mj
(θ, ϕ),

(41)

so that we obtain (	σ · 	L + 1)y± = ±(� + 1)y±,
(
2	σ · 	L + 3

2

)
y+ = (

2� + 3
2

)
y+ and(

2	σ · 	L + 3
2

)
y− = −[2(� + 1) + 1

2 ]y−. Note that on these subspaces the 3D WH algebra
is reduced to a formal 1D radial form with Hw

(
2	σ · 	L + 3

2

)
acquiring respectively the forms

Hw
(
2� + 3

2

)
and

Hw
(−2� − 5

2

) = �1Hw
(
2� + 3

2

)
�1. (42)

Thus, the positive finite form of Hw in (36) together with the ladder relations (4) and the
form (38) leads to the direct determination of the state energies and the corresponding Wigner
ground-state wave functions by the simple application of the annihilation conditions

a− (
2� + 3

2

) (
RB(0)

osc (s)

RF(0)

osc (s)

)
= 0. (43)

Then, the complete energy spectrum for Hw and the whole set of energy eigenfunctions
�(n)

osc(s, θ, ϕ)(n = 2m, 2m + 1,m = 0, 2, . . .) follow from the step-up operation provided by
a+(2�+ 3

2 ) acting on the ground state, which are also simultaneous eigenfunctions of the fermion
number operator N = 1

2 (1 − �3). We obtain for the bosonic sector Hamiltonian HB
osc with the

fermion number nf = 0 and even orbital angular momentum �4 = 2�, � = 0, 1, 2, . . . , the
complete energy spectrum and eigenfunctions given by

[
EB

osc

](m)

�4=2�
= 2� + 2 + 2m, (m = 0, 1, 2, . . .), (44)

[
�B

osc(s, θ, ϕ)
](m)

�4=2�
∝ s2� exp

(− 1
2 s2)L(2�+1)

m (s2)

{
y+(θ, ϕ)

y−(θ, ϕ)
(45)

where Lα
m(s2) are generalized Laguerre polynomials [2]. Now, to relate the mapping of the

4D super-Wigner system given by (8) with the corresponding system in 3D, we make use of
the substitution of s2 = ρ, equation (29) and the following substitutions:

∂

∂s
= 2

√
ρ

∂

∂ρ
,

∂2

∂s2
= 4ρ

∂2

∂ρ2
+ 2

∂

∂ρ
, (46)

in (34) and divide the eigenvalue equation for Hw in (33) by 4s2 = 4ρ, obtaining⎛
⎝− 1

2

(
∂2

∂ρ2 + 2
ρ

∂
∂ρ

) − 1
2

[− 1
4 − 	σ · 	L(	σ · 	L+1)

ρ2

]
0

0 − 1
2

(
∂2

∂ρ2 + 2
ρ

∂
∂ρ

) − 1
2

[− 1
4 − (	σ · 	L+ 1

2 )(	σ · 	L+ 3
2 )

ρ2

]
⎞
⎠ (

�B

�F

)

= 1

4ρ
Ew

(
�B

�F

)
. (47)

The bosonic sector of the above eigenvalue equation can immediately be identified with
the eigenvalue equation for the Hamiltonian of the 3D hydrogen-like atom expressed in the
equivalent form given by{

−1

2

(
∂2

∂ρ2
+

2

ρ

∂

∂ρ

)
− 1

2

[
−1

4
− 	σ · 	L(	σ · 	L + 1)

ρ2

]}
ψ(ρ, θ, ϕ) = λ

2ρ
ψ(ρ, θ, ϕ), (48)

7
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where �B = ψ(ρ, θ, ϕ) and the connection between the dimensionless and dimensional
eigenvalues, respectively, λ and Ea with e = 1 = m = h̄ is given by [36]

λ = Z√−2Ea

, ρ = αr, α =
√

−8Ea, (49)

where Ea is the energy of the electron hydrogen-like atom and (r, θ, ϕ) stand for the spherical
polar coordinates of the position vector 	r = (x1, x2, x3) of the electron in relation to the
nucleons of charge Z together with s2 = ρ. We see then from equations (44), (45), (48) and
(49) that the complete energy spectrum and eigenfunctions for the hydrogen-like atom are
given by

λ

2
= EB

osc

4
⇒ [Ea](m)

� = [Ea](N) = − Z2

2N2
, (N = 1, 2, . . .), (50)

and

[ψ(ρ, θ, ϕ)](m)

�;,mj
∝ ρ� exp

(
−ρ

2

)
L(2�+1)

m (ρ)

{
y+(θ, ϕ)

y−(θ, ϕ)
(51)

where EB
osc is given by equation (44).

Here, N = � + m + 1(� = 0, 1, 2, . . . , N − 1;m = 0, 1, 2, . . .) is the principal quantum
number. Kostelecky and Nieto have shown that the supersymmetry in non-relativistic quantum
mechanics may be realized in atomic systems [25].

4. Conclusion

In this work, we have deduced the energy eigenvalues and eigenfunctions of the hydrogen atom
via the Wigner–Heisenberg (WH) algebra in non-relativistic quantum mechanics. Indeed, from
the ladder operators for the four-dimensional (4D) super-Wigner system, ladder operators for
the mapped super 3D system, and hence for the hydrogen-like atom in bosonic sector, are
deduced. The complete spectrum for the hydrogen atom is found with considerable simplicity.
Therefore, the solutions of the time-independent Schrödinger equation for the hydrogen atom
were mapped onto the super-Wigner harmonic oscillator in 4D using the Kustaanheimo–Stiefel
transformation.
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CES-UFCG of Cuité-PB, Brazil. This research was supported in part by CNPq (Brazilian
Research Agency). This work was initiated in collaboration with Jambunatha Jayaraman (in
memory), whose advice and encouragement were fundamental.

References

[1] Wigner E P 1950 Phys. Rev. 77 711
Yang L M 1951 Phys. Rev. 84 788
O’Raifeartaigh L and Ryan C 1963 Proc. R. Irish Acad. A 62 93
Ohnuki Y and Kamefuchi S 1978 J. Math. Phys. 19 67
Ohnuki Y and Watanabe S 1992 J. Math. Phys. 33 3653
Plyushchay S M 1996 Ann. Phys. 245 339

[2] Jayaraman J and de Lima Rodrigues R 1990 J. Phys. A: Math. Gen. 23 3123
[3] Jayaraman J and de Lima Rodrigues R 1994 Mod. Phys. Lett. A 9 1047
[4] Plyushchay S M 2000 Int. J. Mod. Phys. A 15 3679

8

http://dx.doi.org/10.1103/PhysRev.77.711
http://dx.doi.org/10.1103/PhysRev.84.788
http://dx.doi.org/10.1063/1.523516
http://dx.doi.org/10.1063/1.529860
http://dx.doi.org/10.1006/aphy.1996.0012
http://dx.doi.org/10.1088/0305-4470/23/14/013
http://dx.doi.org/10.1142/S0217732394000873


J. Phys. A: Math. Theor. 42 (2009) 355213 R de Lima Rodrigues

[5] Green S H 1953 Phys. Rev 90 270
Mukunda N, Sudarshan E C G, Sharma J K and Mehta C L 1980 J. Math. Phys. 21 2386

[6] Vasiliev M A 1991 Int. J. Mod. Phys. A 6 1115
[7] Polychronakos A P 1992 Phys. Rev. Lett. 69 703
[8] Brzezinski T, Egusquiza I L and Macfarlane A J 1993 Phys. Lett. B 311 202

Brink L, Hansson T H and Vasiliev M A 1992 Phys. Lett. B 286 109
Brink L, Hansson T H, Konstein S and Vasiliev M A 1993 Nucl. Phys. B 401 591

[9] Jing S 1998 J. Phys. A: Math. Gen. 31 6347
[10] Matos-Albiague A 2001 J. Phys. A: Math. Gen. 34 3125
[11] de Lima Rodrigues R 2003 q-deformed Wigner oscillator in quantum mechanics, arXiv:hep-th/0308188
[12] Palev T D and Stoilova N I 1994 J. Phys. A: Math. Gen. 27 7387
[13] King R C, Palev T D, Stoilova N I and Van der Jeugt J 2003 J. Phys. A: Math. Gen. 36 4337 (arXiv:

hep-th/0304136)
[14] PalevT D 2006 SL(3|N) Wigner quantum oscillators: examples of ferromagnetic-like oscillators with

noncommutative, square-commutative geometry, arXiv:hep-th/0601201v2
[15] King R C, Stoilova N I and Van der Jeugt J 2006 J. Phys. A: Math. Gen. 39 5763
[16] Matos-Albiague A 2001 J. Phys. A: Math. Gen. 34 11059
[17] Lohe M A and Thilagam A 2004 J. Phys. A: Math. Gen. 37 6181
[18] Lohe M A and Thilagam A 2005 J. Phys. A: Math. Gen. 38 461
[19] Kustaanheimo P and Stiefel E 1965 J. Reine Angew. Math. 218 204
[20] Chen A C 1980 Phys. Rev. A 22 333

Chen A C 1980 Phys. Rev. A 22 2901 (erratum)
[21] Cornish F H J 1984 J. Phys. A: Math. Gen. 17 323
[22] Chen A C and Kibler M 1985 Phys. Rev. A 31 3960
[23] D’Hoker E and Vinet L 1985 Nucl. Phys. B 260 79
[24] Kostelecky V A, Nieto M M and Truax D R 1985 Phys. Rev. D 32 2627
[25] Kostelecky V A and Nieto M M 1985 Phys. Rev. D 32 1293

Kostelecky V A and Nieto M M 1984 Phys. Rev. Lett. 35 2285
[26] Amado R D 1988 Phys. Rev. A 37 2277
[27] Lange O L and Raab R E 1991 Operator Methods in Quantum Mechanics (New York: Clarendon Press, Oxford

University Press)
[28] Tangerman R D and Tjon J A 1993 Phys. Rev. A 48 1089
[29] Cooper F, Khare A and Sukhatme U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)

Bagchi B 2000 Supersymmetry in Quantum and Classical Mechanics (FL, USA: Chapman and Hall)
Junker G 1996 Supersymmetric Methods in Quantum Mechanics and Statistical Physics (Berlin: Springer)

[30] Lahiri A, Roy P K and Bagchi B 1987 J. Phys. A: Math. Gen. 20 5403
[31] Bergmann D and Frishman Y 1965 J. Math. Phys. 6 1855
[32] Cahill E 1990 J. Phys. A: Math. Gen. 23 1519
[33] Chen J-L, Zhang H-B, Wang X-H and Zhao X-G 2000 Int. J. Theor. Phys. 39 2043
[34] Zeng G-J, Su K-L and Li M 1994 Phys. Rev. A 50 4373
[35] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series, and Products translation 4th edn, ed A Jefferey

(New York: Academic) 959pp
[36] Mathews P M and Venkatesan K 1978 A Text Book of Quantum Mechanics (New Delhi: Tata McGraw-Hill)

9

http://dx.doi.org/10.1103/PhysRev.90.270
http://dx.doi.org/10.1063/1.524695
http://dx.doi.org/10.1142/S0217751X91000605
http://dx.doi.org/10.1103/PhysRevLett.69.703
http://dx.doi.org/10.1016/0370-2693(93)90555-V
http://dx.doi.org/10.1016/0370-2693(92)90166-2
http://dx.doi.org/10.1016/0550-3213(93)90315-G
http://dx.doi.org/10.1088/0305-4470/31/30/004
http://dx.doi.org/10.1088/0305-4470/34/14/317
http://www.arxiv.org/abs/hep-th/0308188
http://dx.doi.org/10.1088/0305-4470/27/22/014
http://dx.doi.org/10.1088/0305-4470/36/15/309
http://www.arxiv.org/abs/hep-th/0304136
http://www.arxiv.org/abs/hep-th/0601201
http://dx.doi.org/10.1088/0305-4470/39/20/010
http://dx.doi.org/10.1088/0305-4470/34/49/321
http://dx.doi.org/10.1088/0305-4470/37/23/015
http://dx.doi.org/10.1088/0305-4470/38/2/012
http://dx.doi.org/10.1103/PhysRevA.22.333
http://dx.doi.org/10.1103/PhysRevA.22.2901
http://dx.doi.org/10.1088/0305-4470/17/2/018
http://dx.doi.org/10.1103/PhysRevA.31.3960
http://dx.doi.org/10.1016/0550-3213(85)90311-6
http://dx.doi.org/10.1103/PhysRevD.32.2627
http://dx.doi.org/10.1103/PhysRevLett.53.2285
http://dx.doi.org/10.1103/PhysRevA.37.2277
http://dx.doi.org/10.1103/PhysRevA.48.1089
http://dx.doi.org/10.1088/0305-4470/20/15/052
http://dx.doi.org/10.1063/1.1704733
http://dx.doi.org/10.1088/0305-4470/23/9/016
http://dx.doi.org/10.1023/A:1003661821241
http://dx.doi.org/10.1103/PhysRevA.50.4373

	1. Introduction
	2. The super-Wigner oscillator in 1D
	3. The constrained super-Wigner oscillator
	4. Conclusion
	Acknowledgments
	References

