On the hydrogen atom via the Wigner-Heisenberg algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42355213
(http://iopscience.iop.org/1751-8121/42/35/355213)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.155
The article was downloaded on 03/06/2010 at 08:06

Please note that terms and conditions apply.

On the hydrogen atom via the Wigner-Heisenberg algebra

R de Lima Rodrigues
Unidade Acadêmica de Educação, Universidade Federal de Campina Grande, Cuité-PB, CEP 58.175-000, Brazil
and
Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro, RJ, Brazil
E-mail: rafael@df.ufcg.edu.br and rafaelr@cbpf.br

Received 16 January 2009, in final form 20 July 2009
Published 17 August 2009
Online at stacks.iop.org/JPhysA/42/355213

Abstract

We extend the usual Kustaanheimo-Stiefel 4D \rightarrow 3D mapping to study and discuss a constrained super-Wigner oscillator in four dimensions. We show that the physical hydrogen atom is the system that emerges in the bosonic sector of the mapped super 3D system.

PACS numbers: 11.30.Pb, 03.65.Fd, 11.10.Ef

1. Introduction

The R-deformed Heisenberg or Wigner-Heisenberg (WH) algebraic technique [1] which was super-realized for quantum oscillators [2-4] is related to the paraboson relations introduced by Green [5].

Let us now point out that the WH algebra is given by the following (anti-)commutation relations $\left([A, B]_{+} \equiv A B+B A\right.$ and $\left.[A, B]_{-} \equiv A B-B A\right)$:

$$
\begin{equation*}
H=\frac{1}{2}\left[a^{-}, a^{+}\right]_{+}, \quad\left[H, a^{ \pm}\right]_{-}= \pm a^{ \pm}, \quad\left[a^{-}, a^{+}\right]_{-}=1+c R, \tag{1}
\end{equation*}
$$

where c is a real constant associated with the Wigner parameter [2] and the R operator satisfies

$$
\begin{equation*}
\left[R, a^{ \pm}\right]_{+}=0, \quad R^{2}=1 \tag{2}
\end{equation*}
$$

Note that when $c=0$, we have the standard Heisenberg algebra.
The generalized quantum condition given in equation (1) has been found to be relevant in the context of integrable models [6]. Furthermore, this algebra was also used to solve the energy eigenvalue and eigenfunctions of the Calogero interaction, in the context of onedimensional many-body integrable systems, in terms of a new set of phase space variables involving exchanged operators [7, 8]. From this WH algebra, a new kind of deformed calculus has been developed [9-11].

The WH algebra has been considered for the three-dimensional non-canonical oscillator to generate a representation of the orthosympletic Lie superalgebra $\operatorname{osp}(3 / 2)$ [12], and recently Palev et al have investigated the 3D Wigner oscillator under a discrete non-commutative context [13, 14]. In addition, the connection of the WH algebra with the Lie superalgebra $s \ell(1 \mid n)$ has been studied in a detailed manner [15].

Recently, the relevance of relations (1) to quantization in fractional dimension has also been discussed $[16,17]$ and the properties of Weyl-ordered polynomials in operators P and Q, in fractional-dimensional quantum mechanics, have been developed [18].

The Kustaanheimo-Stiefel mapping [19] has been exactly solved and well-studied in the literature. (See for example, Chen [20], Cornish [21], Chen and Kibler [22], D'Hoker and Vinet [23].) Kostelecky, Nieto and Truax [24] have studied in a detailed manner the relation of the supersymmetric (SUSY) Coulombian problem [25-29] in D-dimensions with that of SUSY isotropic oscillators in D-dimensions in the radial version (see also Lahiri et al [30]). For the mapping with 3D radial oscillators, see also Bergmann and Frishman [31], Cahill [32] and Chen et al [33]. The connection of the D-dimensional hydrogen atom with the D dimensional harmonic oscillator in terms of the su(1,1) algebra has been investigated by Zeng et al [34]. However, the correspondence mapping of a 4D isotropic constrained super-Wigner oscillator (for super-Wigner oscillators see our previews work [2,3]) with the corresponding super-system in 3D, such that the usual 3D hydrogen atom emerges in the 4D $\rightarrow 3 \mathrm{D}$ mapping in the bosonic sector, has not been studied in the literature; the objectives of the present work are to do such a mapping and to analyze in detail the consequences. In this work, the stationary states of the hydrogen atom are mapped onto the super-Wigner oscillator using the Kustaanheimo-Stiefel transformation.

This work is organized as follows. In section 2 , we start by summarizing the R-deformed Heisenberg algebra or the Wigner-Heisenberg algebraic technique for the Wigner oscillator, based on the super-realization of the WH algebra for simpler effective spectral resolutions of general oscillator-related potentials, applied by Jayaraman and Rodrigues, in [2]. In section 3, we illustrate how to construct the 4D \rightarrow 3D mapping in the bosonic sector which offers a simple resolution of the hydrogen energy spectra and eigenfunctions. The conclusion is given in section 4.

2. The super-Wigner oscillator in 1D

The Wigner oscillator ladder operators

$$
\begin{equation*}
a^{ \pm}=\frac{1}{\sqrt{2}}\left(\pm \mathrm{i} \hat{p}_{x}-\hat{x}\right) \tag{3}
\end{equation*}
$$

of the WH algebra may be written in terms of the super-realization of the position and momentum operators, namely $\hat{x}=x \Sigma_{1}$ and $\hat{p}_{x}=-\mathrm{i} \Sigma_{1} \frac{\mathrm{~d}}{\mathrm{~d} x}+\frac{c}{2 x} \Sigma_{2}$, satisfy the general quantum rule $\left[\hat{x}, \hat{p}_{x}\right]_{-}=\mathrm{i}(1+c R)$, where $c=2(\ell+1)$. Thus, in this representation the reflection operator becomes $R=\Sigma_{3}$, where Σ_{3} is the diagonal Pauli matrix.

Thus, from the super-realized first-order ladder operators given by

$$
\begin{equation*}
a^{ \pm}(\ell+1)=\frac{1}{\sqrt{2}}\left\{ \pm \frac{\mathrm{d}}{\mathrm{~d} x} \pm \frac{(\ell+1)}{x} \Sigma_{3}-x\right\} \Sigma_{1}, \quad \ell>0 \tag{4}
\end{equation*}
$$

the Wigner Hamiltonian becomes

$$
\begin{equation*}
H(\ell+1)=\frac{1}{2}\left[a^{+}(\ell+1), a^{-}(\ell+1)\right]_{+} \tag{5}
\end{equation*}
$$

and the WH algebra ladder relations are readily obtained as

$$
\begin{equation*}
\left[H(\ell+1), a^{ \pm}(\ell+1)\right]_{-}= \pm a^{ \pm}(\ell+1) \tag{6}
\end{equation*}
$$

Equations (5) and (6) together with the commutation relation

$$
\begin{equation*}
\left[a^{-}(\ell+1), a^{+}(\ell+1)\right]_{-}=1+2(\ell+1) \Sigma_{3} \tag{7}
\end{equation*}
$$

constitute the super-WH algebra.
Thus, the super-Wigner oscillator Hamiltonian in terms of Pauli's matrices $\left(\Sigma_{i}, i=\right.$ $1,2,3$) is given by

$$
\begin{align*}
H(\ell+1) & =\frac{1}{2}\left\{-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+x^{2}+\frac{1}{x^{2}}(\ell+1)\left[(\ell+1) \Sigma_{3}-1\right] \Sigma_{3}\right\} \\
& =\left(\begin{array}{cc}
H_{-}(\ell) & 0 \\
0 & H_{+}(\ell)=H_{-}(\ell+1)
\end{array}\right) \tag{8}
\end{align*}
$$

where the bosonic and fermionic sector Hamiltonians are respectively given by

$$
\begin{equation*}
H_{-}(\ell)=\frac{1}{2}\left\{-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+x^{2}+\frac{1}{x^{2}} \ell(\ell+1)\right\} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{+}(\ell)=\frac{1}{2}\left\{-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+x^{2}+\frac{1}{x^{2}}(\ell+1)(\ell+2)\right\}=H_{-}(\ell+1) \tag{10}
\end{equation*}
$$

Note that the bosonic sector is the Hamiltonian of the oscillator with a barrier.
The super-Wigner oscillator eigenfunctions that generate the eigenspace associated with even(odd) Σ_{3}-parity for bosonic(fermionic) quanta $n=2 m(n=2 m+1)$ are given by
$\Psi_{n=2 m}(x ; \ell+1)=\binom{\psi_{-}^{(m)}(x ; \ell)}{0}, \quad \Psi_{n=2 m+1}(x ; \ell+1)=\binom{0}{\psi_{+}^{(m)}(x ; \ell)}$
and satisfy the following eigenvalue equation:

$$
\begin{align*}
& H(\ell+1) \Psi_{n}(x ; \ell+1)=E_{n} \Psi_{n}(x ; \ell+1) \\
& \Sigma_{3} \Psi_{n=2 m}=\Psi_{n=2 m} \tag{12}\\
& \Sigma_{3} \Psi_{n=2 m+1}=-\Psi_{n=2 m+1}
\end{align*}
$$

where the non-degenerate energy eigenvalues are obtained by the repeated application of the raising operator on the ground eigenstate

$$
\begin{equation*}
\Psi_{n}(x ; \ell+1) \propto\left(a^{+}(\ell+1)\right)^{n} \Psi_{0}(x ; \ell+1) \tag{13}
\end{equation*}
$$

and are given by

$$
\begin{equation*}
E_{n}=\ell+\frac{3}{2}+n, \quad n=0,1,2, \ldots \tag{14}
\end{equation*}
$$

The ground-state energy eigenfunction satisfies the following annihilation condition:

$$
\begin{equation*}
a^{-}(\ell+1) \Psi_{(0)}(x ; \ell+1)=0 \tag{15}
\end{equation*}
$$

which using equation (4) results in

$$
\psi_{-}^{(0)}(x ; \ell)=N_{1} x^{(\ell+1)} \mathrm{e}^{-\frac{x^{2}}{2}}, \quad \psi_{+}^{(0)}(x ; \ell)=N_{2} x^{-(\ell+1)} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

If we assume $\ell+1>0$, only $\psi_{-}^{(0)}(x ; \ell)$ meets the physical requirement of vanishing at the origin and $\psi_{+}^{(0)}(x ; \ell)$, which does not stand this test, is discarded by setting $N_{2}=0$ in (15). In this case, the normalizable ground-state eigenfunction is given, up to a normalization constant,
by

$$
\begin{equation*}
\Psi_{0}(x ; \ell+1) \propto\binom{x^{(\ell+1)} \mathrm{e}^{-\frac{1}{2} x^{2}}}{0} \tag{16}
\end{equation*}
$$

which has even Σ_{3}-parity, i.e. $\Sigma_{3} \Psi_{0}(x ; \ell+1)=\Psi_{0}(x ; \ell+1)$.
For the bosonic and fermionic sector Hamiltonians, the energy eigenvectors satisfy the following equation:

$$
\begin{equation*}
H_{ \pm}(\ell) \psi_{ \pm}^{(m)}(x ; \ell)=E_{ \pm}^{(m)} \psi_{ \pm}^{(m)}(x ; \ell) \tag{17}
\end{equation*}
$$

where the eigenvalues are exactly constructed via WH algebra ladder relations and are given by

$$
\begin{equation*}
E_{-}^{(m)}=E_{0}+2 m, \quad E_{+}^{(m)}=E_{0}+2(m+1), \quad m=0,1,2, \ldots \tag{18}
\end{equation*}
$$

where E_{0} is the energy of the Wigner oscillator ground state. Note that the energy spectrum of a particle in a potential given by bosonic sector Hamiltonian is equally spaced, similar to that of the 3 D isotropic harmonic oscillator, with a difference of two quanta between two levels.

In addition, note that the operators $a^{ \pm}(\ell+1)$ given in equation (4) together with $H(\ell+1), J_{ \pm}=\left(a^{ \pm}(\ell+1)\right)^{2}$ satisfy an $\operatorname{osp}(1 \mid 2)$ superalgebra.

3. The constrained super-Wigner oscillator in 4D

The usual isotropic oscillator in 4D has the following eigenvalue equation for its Hamiltonian $H_{\text {osc }}^{B}$, described by (employing the natural system of units $\hbar=m=1$) the time-independent Schrödinger equation

$$
\begin{equation*}
H_{\mathrm{osc}}^{B} \Psi_{\mathrm{osc}}^{B}(y)=E_{\mathrm{osc}}^{B} \Psi_{\mathrm{osc}}^{B}(y), \tag{19}
\end{equation*}
$$

with

$$
\begin{align*}
& H_{\mathrm{osc}}^{B}=-\frac{1}{2} \nabla_{4}^{2}+\frac{1}{2} s^{2}, \quad s^{2}=\Sigma_{i=1}^{4} y_{i}^{2}, \tag{20}\\
& \nabla_{4}^{2}=\frac{\partial^{2}}{\partial y_{1}^{2}}+\frac{\partial^{2}}{\partial y_{2}^{2}}+\frac{\partial^{2}}{\partial y_{3}^{2}}+\frac{\partial^{2}}{\partial y_{4}^{2}}=\sum_{i=1}^{4} \frac{\partial^{2}}{\partial y_{i}^{2}}, \tag{21}
\end{align*}
$$

where the superscript B in $H_{\text {osc }}^{B}$ is in anticipation of the Hamiltonian, with constraint to be defined, being implemented in the bosonic sector of the super $4 D$ Wigner system with unitary frequency. Changing to spherical coordinates in four space dimensions and allowing a factorization of the energy eigenfunctions as a product of a radial eigenfunction and spinspherical harmonic. In (21), the coordinates $y_{i}(i=1,2,3,4)$ in spherical coordinates in 4D are defined by $[20,23]$

$$
\begin{align*}
& y_{1}=s \cos \left(\frac{\theta}{2}\right) \cos \left(\frac{\varphi-\omega}{2}\right) \\
& y_{2}=s \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\varphi-\omega}{2}\right) \tag{22}\\
& y_{3}=s \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\varphi+\omega}{2}\right) \\
& y_{4}=s \sin \left(\frac{\theta}{2}\right) \sin \left(\frac{\varphi+\omega}{2}\right)
\end{align*}
$$

where $0 \leqslant \theta \leqslant \pi, 0 \leqslant \varphi \leqslant 2 \pi$ and $0 \leqslant \omega \leqslant 4 \pi$.

The mapping of the coordinates $y_{i}(i=1,2,3,4)$ in 4D with the Cartesian coordinates $\rho_{i}(i=1,2,3)$ in 3D is given by the Kustaanheimo-Stiefel transformation

$$
\begin{align*}
& \rho_{i}=\sum_{a, b=1}^{2} z_{a}^{*} \Gamma_{a b}^{i} z_{b}, \quad \quad(i=1,2,3) \tag{23}\\
& z_{1}=y_{1}+i y_{2}, \quad z_{2}=y_{3}+i y_{4}, \tag{24}
\end{align*}
$$

where $\Gamma_{a b}^{i}$ are the elements of the usual Pauli matrices. If one defines z_{1} and z_{2} as in equation (24), $Z=\binom{z_{1}}{z_{2}}$ is a two-dimensional spinor of $S U(2)$ transforming as $Z \rightarrow Z^{\prime}=U Z$ with U a two-by-two matrix of $\mathrm{SU}(2)$ and, of course, $Z^{\dagger} Z$ is invariant. So the transformation (23) is very spinorial. In addition, using the standard Euler angles in parametrizing $\mathrm{SU}(2)$ as in transformations (22) and (24), one obtains

$$
\begin{equation*}
z_{1}=s \cos \left(\frac{\theta}{2}\right) \mathrm{e}^{\frac{\mathrm{i}}{2}(\varphi-\omega)} \quad z_{2}=s \sin \left(\frac{\theta}{2}\right) \mathrm{e}^{\frac{\mathrm{i}}{2}(\varphi+\omega)} \tag{25}
\end{equation*}
$$

Note that the angles in these equations are divided by 2 . However, in 3D, the angles are not divided by 2 , namely $\rho_{3}=\rho \cos ^{2}\left(\frac{\theta}{2}\right)-\rho \sin ^{2}\left(\frac{\theta}{2}\right)=\rho \cos \theta$. Indeed, from (23) and (25), we obtain

$$
\begin{equation*}
\rho_{1}=\rho \sin \theta \cos \varphi, \quad \rho_{2}=\rho \sin \theta \sin \varphi, \quad \rho_{3}=\rho \cos \theta \tag{26}
\end{equation*}
$$

and also that

$$
\begin{align*}
\rho & =\left\{\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}\right\}^{\frac{1}{2}}=\left\{\left(\rho_{1}+i \rho_{2}\right)\left(\rho_{1}-i \rho_{2}\right)+\rho_{3}^{2}\right\}^{\frac{1}{2}} \\
& =\left\{\left(2 z_{1}^{*} z_{2}\right)\left(2 z_{1} z_{2}^{*}\right)+\left(z_{1}^{*} z_{1}-z_{2}^{*} z_{2}\right)^{2}\right\}^{\frac{1}{2}} \\
& =\left(z_{1} z_{1}^{*}+z_{2} z_{2}^{*}\right)=\sum_{i=1}^{4} y_{i}^{2}=s^{2} . \tag{27}
\end{align*}
$$

The complex form of the Kustaanheimo-Stiefel transformation was given by Cornish [21].
Thus, the expression for H_{osc}^{B} in (20) can be written in the form

$$
\begin{align*}
H_{\mathrm{osc}}^{B}= & -\frac{1}{2}\left(\frac{\partial^{2}}{\partial s^{2}}+\frac{3}{s} \frac{\partial}{\partial s}\right) \\
& -\frac{2}{s^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{\sin ^{2} \theta}\left(2 \cos \theta \frac{\partial}{\partial \varphi}+\frac{\partial}{\partial \omega}\right) \frac{\partial}{\partial \omega}\right]+\frac{1}{2} s^{2} . \tag{28}
\end{align*}
$$

We obtain a constraint by projection (or 'dimensional reduction') from four to three dimensional. Note that $\psi_{\text {osc }}^{B}$ is independent of ω and provides the constraint condition

$$
\begin{equation*}
\frac{\partial}{\partial \omega} \Psi_{\mathrm{osc}}^{B}(s, \theta, \varphi)=0 \tag{29}
\end{equation*}
$$

imposed on $H_{\mathrm{osc}}^{\mathrm{B}}$, the expression for this restricted Hamiltonian, which we continue to call $H_{\text {osc }}^{\mathrm{B}}$, becomes
$H_{\mathrm{osc}}^{\mathrm{B}}=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial s^{2}}+\frac{3}{s} \frac{\partial}{\partial s}\right)-\frac{2}{s^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right]+\frac{1}{2} s^{2}$.

Identifying the expression in paranthesis in (30) with L^{2}, the square of the orbital angular momentum operator in 3D, since we always have

$$
\begin{equation*}
L^{2}=(\vec{\sigma} \cdot \vec{L})(\vec{\sigma} \cdot \vec{L}+1) \tag{31}
\end{equation*}
$$

which is valid for any system, where $\sigma_{i}(i=1,2,3)$ are the Pauli matrices representing the spin $\frac{1}{2}$ degrees of freedom, we obtain for $H_{\text {osc }}^{B}$ the final expression

$$
\begin{equation*}
H_{\mathrm{osc}}^{B}=\frac{1}{2}\left[-\left(\frac{\partial^{2}}{\partial s^{2}}+\frac{3}{s} \frac{\partial}{\partial s}\right)+\frac{4}{s^{2}}(\vec{\sigma} \cdot \vec{L})(\vec{\sigma} \cdot \vec{L}+1)+s^{2}\right] . \tag{32}
\end{equation*}
$$

Now, associating $H_{\text {osc }}^{B}$ with the bosonic sector of the super-Wigner system, H_{w}, subject to the same constraint as in (29), and following the analogy with section 2 of construction of super-Wigner systems, we must first solve the Schrödinger equation

$$
\begin{equation*}
H_{\mathrm{w}} \Psi_{\mathrm{w}}(s, \theta, \varphi)=E_{\mathrm{w}} \Psi_{\mathrm{w}}(s, \theta, \varphi) \tag{33}
\end{equation*}
$$

where the explicit form of H_{w} is given by

$$
\begin{align*}
& H_{\mathrm{w}}\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right) \\
& \quad=\left(\begin{array}{cc}
-\frac{1}{2}\left(\frac{\partial}{\partial s}+\frac{3}{2 s}\right)^{2}+\frac{1}{2} s^{2}+\frac{\left(2 \vec{\sigma} \cdot \vec{L}+\frac{1}{2}\right)\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right)}{2 s^{2}} & 0 \\
0 & \left.-\frac{1}{2}\left(\frac{\partial}{\partial s}+\frac{3}{2 s}\right)^{2}+\frac{1}{2} s^{2}+\frac{\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right)\left(2 \vec{\sigma} \cdot \vec{L}+\frac{5}{2}\right)}{2 s^{2}}\right) .
\end{array} .\right. \tag{34}
\end{align*}
$$

Using the operator technique in [2,3], we begin with the following super-realized mutually adjoint operators:
$a_{\mathrm{w}}^{ \pm} \equiv a^{ \pm}\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right)=\frac{1}{\sqrt{2}}\left[\pm\left(\frac{\partial}{\partial s}+\frac{3}{2 s}\right) \Sigma_{1} \mp \frac{1}{s}\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right) \Sigma_{1} \Sigma_{3}-\Sigma_{1} s\right]$,
where $\vec{\Sigma}_{i}(i=1,2,3)$ constitutes a set of Pauli matrices that provide the fermionic coordinates commuting with the similar Pauli set $\sigma_{i}(i=1,2,3)$ already introduced representing the spin $\frac{1}{2}$ degrees of freedom.

It is checked, after some calculations, that a^{+}and a^{-}of (35) are indeed the raising and lowering operators for the spectra of the super-Wigner Hamiltonian H_{w} respectively and they satisfy the following (anti-)commutation relations of the WH algebra:

$$
\begin{align*}
& \begin{array}{l}
\begin{aligned}
H_{\mathrm{w}} & =\frac{1}{2}\left[a_{\mathrm{w}}^{-}, a_{\mathrm{w}}^{+}\right]_{+} \\
\quad & =a_{\mathrm{w}}^{+} a_{\mathrm{w}}^{-}+\frac{1}{2}\left[1+2\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right) \Sigma_{3}\right]
\end{aligned} \\
\quad=a_{\mathrm{w}}^{-} a_{\mathrm{w}}^{+}-\frac{1}{2}\left[1+2\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right) \Sigma_{3}\right]
\end{array} \\
& {\left[H_{\mathrm{w}}, a_{\mathrm{w}}^{ \pm}\right]_{-}= \pm a_{\mathrm{w}}^{ \pm}}
\end{aligned} \begin{aligned}
& {\left[a_{\mathrm{w}}^{-}, a_{\mathrm{w}}^{+}\right]_{-}=1+2\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right) \Sigma_{3},} \\
& {\left[\Sigma_{3}, a_{\mathrm{w}}^{ \pm}\right]_{+}=0 \Rightarrow\left[\Sigma_{3}, H_{\mathrm{w}}\right]_{-}=0 .} \tag{36}
\end{align*}
$$

Since the operator $\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right)$ commutes with the basic elements $a^{ \pm}, \Sigma_{3}$ and H_{w} of the WH algebra (36), (4) and (38) respectively, it can be replaced by its eigenvalues $\left(2 \ell+\frac{3}{2}\right)$ and $-\left(2 \ell+\frac{5}{2}\right)$ while acting on the respective eigenspace in the form

$$
\begin{equation*}
\Psi_{\mathrm{osc}}(s, \theta, \varphi)=\binom{\Psi_{\mathrm{osc}}^{\mathrm{B}}(s, \theta, \varphi)}{\Psi_{\mathrm{osc}}^{\mathrm{F}}(s, \theta, \varphi)}=\binom{R_{\mathrm{osc}}^{\mathrm{B}}(s)}{R_{\mathrm{osc}}^{\mathrm{F}}(s)} y_{ \pm}(\theta, \varphi) \tag{40}
\end{equation*}
$$

in the notation where $y_{ \pm}(\theta, \varphi)$ are the spin-spherical harmonics [35, 36],

$$
\begin{align*}
& y_{+}(\theta, \varphi)=y_{\ell \frac{1}{2} ; j=\ell+\frac{1}{2}, m_{j}}(\theta, \varphi) \tag{41}\\
& y_{-}(\theta, \varphi)=y_{\ell+1 \frac{1}{2} ; j=(\ell+1)-\frac{1}{2}, m_{j}}(\theta, \varphi)
\end{align*}
$$

so that we obtain $(\vec{\sigma} \cdot \vec{L}+1) y_{ \pm}= \pm(\ell+1) y_{ \pm},\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right) y_{+}=\left(2 \ell+\frac{3}{2}\right) y_{+}$and $\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right) y_{-}=-\left[2(\ell+1)+\frac{1}{2}\right] y_{-}$. Note that on these subspaces the 3D WH algebra is reduced to a formal 1D radial form with $H_{\mathrm{w}}\left(2 \vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right)$ acquiring respectively the forms $H_{\mathrm{w}}\left(2 \ell+\frac{3}{2}\right)$ and

$$
\begin{equation*}
H_{\mathrm{w}}\left(-2 \ell-\frac{5}{2}\right)=\Sigma_{1} H_{\mathrm{w}}\left(2 \ell+\frac{3}{2}\right) \Sigma_{1} . \tag{42}
\end{equation*}
$$

Thus, the positive finite form of H_{w} in (36) together with the ladder relations (4) and the form (38) leads to the direct determination of the state energies and the corresponding Wigner ground-state wave functions by the simple application of the annihilation conditions

$$
\begin{equation*}
a^{-}\left(2 \ell+\frac{3}{2}\right)\binom{R_{\mathrm{osc}}^{B^{(0)}}(s)}{R_{\mathrm{osc}}^{F^{(0)}}(s)}=0 . \tag{43}
\end{equation*}
$$

Then, the complete energy spectrum for H_{w} and the whole set of energy eigenfunctions $\Psi_{\text {osc }}^{(n)}(s, \theta, \varphi)(n=2 m, 2 m+1, m=0,2, \ldots)$ follow from the step-up operation provided by $a^{+}\left(2 \ell+\frac{3}{2}\right)$ acting on the ground state, which are also simultaneous eigenfunctions of the fermion number operator $N=\frac{1}{2}\left(1-\Sigma_{3}\right)$. We obtain for the bosonic sector Hamiltonian $H_{\text {osc }}^{B}$ with the fermion number $n_{f}=0$ and even orbital angular momentum $\ell_{4}=2 \ell, \ell=0,1,2, \ldots$, the complete energy spectrum and eigenfunctions given by

$$
\begin{align*}
& {\left[E_{\mathrm{osc}}^{B}\right]_{\ell_{4}=2 \ell}^{(m)}=2 \ell+2+2 m, \quad(m=0,1,2, \ldots),} \tag{44}\\
& {\left[\Psi_{\mathrm{osc}}^{B}(s, \theta, \varphi)\right]_{\ell_{4}=2 \ell}^{(m)} \propto s^{2 \ell} \exp \left(-\frac{1}{2} s^{2}\right) L_{m}^{(2 \ell+1)}\left(s^{2}\right)\left\{\begin{array}{l}
y_{+}(\theta, \varphi) \\
y_{-}(\theta, \varphi)
\end{array}\right.} \tag{45}
\end{align*}
$$

where $L_{m}^{\alpha}\left(s^{2}\right)$ are generalized Laguerre polynomials [2]. Now, to relate the mapping of the 4D super-Wigner system given by (8) with the corresponding system in 3D, we make use of the substitution of $s^{2}=\rho$, equation (29) and the following substitutions:

$$
\begin{equation*}
\frac{\partial}{\partial s}=2 \sqrt{\rho} \frac{\partial}{\partial \rho}, \quad \frac{\partial^{2}}{\partial s^{2}}=4 \rho \frac{\partial^{2}}{\partial \rho^{2}}+2 \frac{\partial}{\partial \rho} \tag{46}
\end{equation*}
$$

in (34) and divide the eigenvalue equation for H_{w} in (33) by $4 s^{2}=4 \rho$, obtaining

$$
\left(\begin{array}{cc}
-\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}\right)-\frac{1}{2}\left[-\frac{1}{4}-\frac{\vec{\sigma} \cdot \vec{L}(\vec{\sigma} \cdot \vec{L}+1)}{\rho^{2}}\right] & 0 \\
0 & -\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}\right)-\frac{1}{2}\left[-\frac{1}{4}-\frac{\left(\vec{\sigma} \cdot \vec{L}+\frac{1}{2}\right)\left(\vec{\sigma} \cdot \vec{L}+\frac{3}{2}\right)}{\rho^{2}}\right] \tag{47}
\end{array}\right)\binom{\Psi^{B}}{\Psi^{F}}
$$

The bosonic sector of the above eigenvalue equation can immediately be identified with the eigenvalue equation for the Hamiltonian of the 3D hydrogen-like atom expressed in the equivalent form given by

$$
\begin{equation*}
\left\{-\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial}{\partial \rho}\right)-\frac{1}{2}\left[-\frac{1}{4}-\frac{\vec{\sigma} \cdot \vec{L}(\vec{\sigma} \cdot \vec{L}+1)}{\rho^{2}}\right]\right\} \psi(\rho, \theta, \varphi)=\frac{\lambda}{2 \rho} \psi(\rho, \theta, \varphi) \tag{48}
\end{equation*}
$$

where $\Psi^{B}=\psi(\rho, \theta, \varphi)$ and the connection between the dimensionless and dimensional eigenvalues, respectively, λ and E_{a} with $e=1=m=\hbar$ is given by [36]

$$
\begin{equation*}
\lambda=\frac{Z}{\sqrt{-2 E_{a}}}, \quad \rho=\alpha r, \quad \alpha=\sqrt{-8 E_{a}} \tag{49}
\end{equation*}
$$

where E_{a} is the energy of the electron hydrogen-like atom and (r, θ, φ) stand for the spherical polar coordinates of the position vector $\vec{r}=\left(x_{1}, x_{2}, x_{3}\right)$ of the electron in relation to the nucleons of charge Z together with $s^{2}=\rho$. We see then from equations (44), (45), (48) and (49) that the complete energy spectrum and eigenfunctions for the hydrogen-like atom are given by

$$
\begin{equation*}
\frac{\lambda}{2}=\frac{E_{\mathrm{osc}}^{B}}{4} \Rightarrow\left[E_{a}\right]_{\ell}^{(m)}=\left[E_{a}\right]^{(N)}=-\frac{Z^{2}}{2 N^{2}}, \quad(N=1,2, \ldots) \tag{50}
\end{equation*}
$$

and

$$
[\psi(\rho, \theta, \varphi)]_{\ell ; m_{j}}^{(m)} \propto \rho^{\ell} \exp \left(-\frac{\rho}{2}\right) L_{m}^{(2 \ell+1)}(\rho)\left\{\begin{array}{l}
y_{+}(\theta, \varphi) \tag{51}\\
y_{-}(\theta, \varphi)
\end{array}\right.
$$

where $E_{\text {osc }}^{B}$ is given by equation (44).
Here, $N=\ell+m+1(\ell=0,1,2, \ldots, N-1 ; m=0,1,2, \ldots)$ is the principal quantum number. Kostelecky and Nieto have shown that the supersymmetry in non-relativistic quantum mechanics may be realized in atomic systems [25].

4. Conclusion

In this work, we have deduced the energy eigenvalues and eigenfunctions of the hydrogen atom via the Wigner-Heisenberg (WH) algebra in non-relativistic quantum mechanics. Indeed, from the ladder operators for the four-dimensional (4D) super-Wigner system, ladder operators for the mapped super 3D system, and hence for the hydrogen-like atom in bosonic sector, are deduced. The complete spectrum for the hydrogen atom is found with considerable simplicity. Therefore, the solutions of the time-independent Schrödinger equation for the hydrogen atom were mapped onto the super-Wigner harmonic oscillator in 4D using the Kustaanheimo-Stiefel transformation.

Acknowledgments

RLR would like to acknowledge CBPF for hospitality. He would also like to acknowledge CES-UFCG of Cuité-PB, Brazil. This research was supported in part by CNPq (Brazilian Research Agency). This work was initiated in collaboration with Jambunatha Jayaraman (in memory), whose advice and encouragement were fundamental.

References

[1] Wigner E P 1950 Phys. Rev. 77711
Yang L M 1951 Phys. Rev. 84788
O'Raifeartaigh L and Ryan C 1963 Proc. R. Irish Acad. A 6293
Ohnuki Y and Kamefuchi S 1978 J. Math. Phys. 1967
Ohnuki Y and Watanabe S 1992 J. Math. Phys. 333653
Plyushchay S M 1996 Ann. Phys. 245339
[2] Jayaraman J and de Lima Rodrigues R 1990 J. Phys. A: Math. Gen. 233123
[3] Jayaraman J and de Lima Rodrigues R 1994 Mod. Phys. Lett. A 91047
[4] Plyushchay S M 2000 Int. J. Mod. Phys. A 153679
[5] Green S H 1953 Phys. Rev 90270
Mukunda N, Sudarshan E C G, Sharma J K and Mehta C L 1980 J. Math. Phys. 212386
[6] Vasiliev M A 1991 Int. J. Mod. Phys. A 61115
[7] Polychronakos A P 1992 Phys. Rev. Lett. 69703
[8] Brzezinski T, Egusquiza I L and Macfarlane A J 1993 Phys. Lett. B 311202
Brink L, Hansson T H and Vasiliev M A 1992 Phys. Lett. B 286109
Brink L, Hansson T H, Konstein S and Vasiliev M A 1993 Nucl. Phys. B 401591
[9] Jing S 1998 J. Phys. A: Math. Gen. 316347
[10] Matos-Albiague A 2001 J. Phys. A: Math. Gen. 343125
[11] de Lima Rodrigues R 2003 q-deformed Wigner oscillator in quantum mechanics, arXiv:hep-th/0308188
[12] Palev T D and Stoilova N I 1994 J. Phys. A: Math. Gen. 277387
[13] King R C, Palev T D, Stoilova N I and Van der Jeugt J 2003 J. Phys. A: Math. Gen. 364337 (arXiv: hep-th/0304136)
[14] PalevT D 2006 SL(3IN) Wigner quantum oscillators: examples of ferromagnetic-like oscillators with noncommutative, square-commutative geometry, arXiv:hep-th/0601201v2
[15] King R C, Stoilova N I and Van der Jeugt J 2006 J. Phys. A: Math. Gen. 395763
[16] Matos-Albiague A 2001 J. Phys. A: Math. Gen. 3411059
[17] Lohe M A and Thilagam A 2004 J. Phys. A: Math. Gen. 376181
[18] Lohe M A and Thilagam A 2005 J. Phys. A: Math. Gen. 38461
[19] Kustaanheimo P and Stiefel E 1965 J. Reine Angew. Math. 218204
[20] Chen A C 1980 Phys. Rev. A 22333
Chen A C 1980 Phys. Rev. A 222901 (erratum)
[21] Cornish F H J 1984 J. Phys. A: Math. Gen. 17323
[22] Chen A C and Kibler M 1985 Phys. Rev. A 313960
[23] D'Hoker E and Vinet L 1985 Nucl. Phys. B 26079
[24] Kostelecky V A, Nieto M M and Truax D R 1985 Phys. Rev. D 322627
[25] Kostelecky V A and Nieto M M 1985 Phys. Rev. D 321293
Kostelecky V A and Nieto M M 1984 Phys. Rev. Lett. 352285
[26] Amado R D 1988 Phys. Rev. A 372277
[27] Lange O L and Raab R E 1991 Operator Methods in Quantum Mechanics (New York: Clarendon Press, Oxford University Press)
[28] Tangerman R D and Tjon J A 1993 Phys. Rev. A 481089
[29] Cooper F, Khare A and Sukhatme U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific) Bagchi B 2000 Supersymmetry in Quantum and Classical Mechanics (FL, USA: Chapman and Hall) Junker G 1996 Supersymmetric Methods in Quantum Mechanics and Statistical Physics (Berlin: Springer)
[30] Lahiri A, Roy P K and Bagchi B 1987 J. Phys. A: Math. Gen. 205403
[31] Bergmann D and Frishman Y 1965 J. Math. Phys. 61855
[32] Cahill E 1990 J. Phys. A: Math. Gen. 231519
[33] Chen J-L, Zhang H-B, Wang X-H and Zhao X-G 2000 Int. J. Theor. Phys. 392043
[34] Zeng G-J, Su K-L and Li M 1994 Phys. Rev. A 504373
[35] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series, and Products translation 4th edn, ed A Jefferey (New York: Academic) 959pp
[36] Mathews P M and Venkatesan K 1978 A Text Book of Quantum Mechanics (New Delhi: Tata McGraw-Hill)

